Diverging Roads

Theory-Based vs. Machine Learning-Implied Stock Risk Premia

verfasst von
Joachim Grammig, Constantin Hanenberg, Christian Schlag, Jantje Sönksen
Abstract

We assess financial theory-based and machine learning methods to quantify stock risk premia and investigate the potential of hybrid strategies. In the low signal-to-noise environment of a one-month investment horizon, we recommend to rely on a theory-based strategy that exploits the information in current option prices, especially if the risk premium estimate is to be updated at a high frequency. At the one-year horizon, the theory/option-based strategy and an ensemble of neural networks, two notably different methodologies, perform comparably well. A random forest can improve on the theory-based method, provided that a sufficiently long training period is used. In an effort to connect the opposing philosophies, we identify the use of a random forest to account for the approximation errors of the theory-based approach towards measuring stock risk premia as a promising hybrid strategy. It combines the advantages of two diverging roads in the finance world.

Organisationseinheit(en)
Institut für Ökonometrie und Data Science
Externe Organisation(en)
Eberhard Karls Universität Tübingen
Universität zu Köln
Goethe-Universität Frankfurt am Main
Leibniz-Institut für Finanzmarktforschung SAFE
Typ
Artikel
Journal
Journal of Financial Econometrics
Band
23
Seiten
1-55
Anzahl der Seiten
90
ISSN
1479-8409
Publikationsdatum
10.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Finanzwesen, Volkswirtschaftslehre und Ökonometrie
Elektronische Version(en)
https://doi.org/10.1093/jjfinec/nbaf005 (Zugang: Geschlossen)
https://doi.org/10.2139/ssrn.3536835 (Zugang: Offen)
https://doi.org/10.15496/publikation-39286 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“