Diverging Roads

Theory-Based vs. Machine Learning-Implied Stock Risk Premia

verfasst von
Joachim Grammig, Constantin Hanenberg, Christian Schlag, Jantje Sönksen
Abstract

We assess financial theory-based and machine learning methods to quantify stock risk premia and investigate the potential of hybrid strategies. In the low signal-to-noise environment of a one-month investment horizon, we recommend to rely on a theory-based strategy that exploits the information in current option prices, especially if the risk premium estimate is to be updated at a high frequency. At the one-year horizon, the theory/option-based strategy and an ensemble of neural networks, two notably different methodologies, perform comparably well. A random forest can improve on the theory-based method, provided that a sufficiently long training period is used. In an effort to connect the opposing philosophies, we identify the use of a random forest to account for the approximation errors of the theory-based approach towards measuring stock risk premia as a promising hybrid strategy. It combines the advantages of two diverging roads in the finance world.

Externe Organisation(en)
Goethe-Universität Frankfurt am Main
Eberhard Karls Universität Tübingen
Leibniz-Institut für Finanzmarktforschung SAFE
Universität zu Köln
Typ
Arbeitspapier/Diskussionspapier
Anzahl der Seiten
90
Publikationsdatum
24.02.2020
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Elektronische Version(en)
https://doi.org/10.2139/ssrn.3536835 (Zugang: Offen)
https://doi.org/10.15496/publikation-39286 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“